Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; : e2304572, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656754

RESUMO

Developing hybrid hydrogel dressings with anti-inflammatory, antioxidant, angiogenetic, and antibiofilm activities with higher bone tissue penetrability to accelerate diabetic wound healing and prevent diabetic foot osteomyelitis (DFO) is highly desirable in managing diabetic wounds. Herein, the glycopeptide teicoplanin is used for the first time as a green reductant to chemically reduce graphene oxide (GO). The resulting teicoplanin-decorated reduced graphene oxide (rGO) is incorporated into a mixture of silk proteins (SP) and crosslinked with genipin to yield a physicochemically crosslinked rGO-SP hybrid hydrogel. This hybrid hydrogel exhibits high porosity, self-healing, shear-induced thinning, increased cell proliferation and migration, and mechanical properties suitable for tissue engineering. Moreover, the hybrid hydrogel eradicates bacterial biofilms with a high penetrability index in agar and hydroxyapatite disks covered with biofilms, mimicking bone tissue. In vivo, the hybrid hydrogel accelerates the healing of noninfected wounds in a diabetic rat and infected wounds in a diabetic mouse by upregulating anti-inflammatory cytokines and downregulating matrix metalloproteinase-9, promoting M2 macrophage polarization and angiogenesis. The implantation of hybrid hydrogel into the infected site of mouse tibia improves bone regeneration. Hence, the rGO-SP hybrid hydrogel can be a promising wound dressing for treating infectious diabetic wounds, providing a further advantage in preventing DFO.

2.
Bioact Mater ; 28: 74-94, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37234363

RESUMO

The management of diabetic wounds remains a critical therapeutic challenge. Platelet-rich plasma (PRP) gel, PRP-derived exosomes (PRP-Exos), and mesenchymal stem cell-derived exosomes (MSC-Exos) have demonstrated therapeutic potential in wound treatment. Unfortunately, their poor mechanical properties, the short half-lives of growth factors (GFs), and the burst release of GFs and exosomes have limited their clinical applications. Furthermore, proteases in diabetic wounds degrade GFs, which hampers wound repair. Silk fibroin is an enzyme-immobilization biomaterial that could protect GFs from proteases. Herein, we developed novel dual-crosslinked hydrogels based on silk protein (SP) (sericin and fibroin), including SP@PRP, SP@MSC-Exos, and SP@PRP-Exos, to promote diabetic wound healing synergistically. SP@PRP was prepared from PRP and SP using calcium gluconate/thrombin as agonist, while SP@PRP-Exos and SP@MSC-Exos were derived from exosomes and SP with genipin as crosslinker. SP provided improved mechanical properties and enabled the sustained release of GFs and exosomes, thereby overcoming the limitations of PRP and exosomes in wound healing. The dual-crosslinked hydrogels displayed shear-induced thinning, self-healing, and eradication of microbial biofilms in a bone-mimicking environment. In vivo, the dual-crosslinked hydrogels contributed to faster diabetic wound healing than PRP and SP by upregulating GFs expression, down-regulating matrix metalloproteinase-9 expression, and by promoting an anti-NETotic effect, angiogenesis, and re-epithelialization. Hence, these dual-crosslinked hydrogels have the potential to be translated into a new generation of diabetic wound dressings.

3.
Macromol Biosci ; 22(10): e2200201, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35962940

RESUMO

Chronic wounds are associated with infectious microbial complex communities called biofilms. The management of chronic wound infection is limited by the complexity of selecting an appropriate antimicrobial dressing with antibiofilm activity due to antimicrobial resistance in biofilms. Herein, the in situ developed bacterial cellulose/poly(vinyl alcohol) (BC-PVA) composite is ex situ modified with genipin-crosslinked silk sericin (SS) and azithromycin (AZM) (SSga). The composite is evaluated as a wound dressing material for preventing the development, dispersion, and/or eradication of microbial biofilm. Fourier transform infrared spectroscopy confirms the intermolecular interactions between the components of BC-PVA@SSga scaffolds. The addition of PVA during BC production significantly increases the porosity from 53.5% ± 2.3% to 83.5% ± 2.9%, the pore size from 2.3 ± 1.9 to 16.8 ± 4.5 µm, the fiber diameter from 35.5 ± 10 to 120 ± 27.4 nm, and improves the thermal stability and flexibility. Studies using bacteria and fungi indicate high inhibition and disruption of biofilms upon AZM addition. In vitro biocompatibility analysis confirms the nontoxic nature of BC-PVA@SSga toward HaCaT and NIH3T3 cells, whereas the addition of SS enhances cell proliferation. The developed BC-PVA@SSga accelerates wound healing in the infected mouse model, thus can be a promising wound dressing biomaterial.


Assuntos
Anti-Infecciosos , Sericinas , Animais , Azitromicina/farmacologia , Bactérias , Materiais Biocompatíveis , Biofilmes , Celulose/farmacologia , Camundongos , Células NIH 3T3 , Álcool de Polivinil/química , Álcool de Polivinil/farmacologia , Porosidade , Sericinas/química , Sericinas/farmacologia
4.
Pan Afr Med J ; 41: 55, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35317482

RESUMO

Introduction: the limited number of equipped laboratories and the lack of expertise left Africa lagging behind in terms of contribution in genomic data generation. The COVID-19 pandemic has drawn the attention of all public health stakeholders so that it can be used as a marker of the efforts that public health systems can produced. The main purpose of the present analytical study was to evaluate the contribution of the African continent in the genomic surveillance of SARS-CoV-2. Methods: data from the two most popular genomic databases on SARS-CoV-2 (GISAID EpiCov and NCBI Virus) were extracted and analyzed. Comparisons were made using the sequencing ratio which represents the number of genomic sequence published over one thousands confirmed cases. Results: considering continental blocks, the Africa occupied the fourth place after Oceania, Europe and North America based on sequencing ratios. However, when the considered comparison parameter is the number of sequences, the African continent was the fifth contributor after Europe, North America, Asia and South America. Conclusion: the study showed that African countries have effectively integrated the genomic data generation in the public health response strategies but the effective use of these data for a perfect surveillance is not clearly established. There is a need for capacity building in genomic data analyses for a better response to public health threats in Africa.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Tomada de Decisões , Genoma Viral , Genômica , Humanos , Pandemias , Saúde Pública , SARS-CoV-2/genética
5.
Macromol Biosci ; 22(1): e2100292, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34669251

RESUMO

The unique properties of silk proteins (SPs), particularly silk sericin (SS) and silk fibroin (SF), have attracted attention in the design of scaffolds for tissue engineering over the past decades. Since SF has good mechanical properties, while SS displays bioactivity, scaffolds combining both proteins should exhibit complementary properties enhancing the potential of these materials. Unfortunately, SS-SF composites can generate chronic immune responses and their immunogenic element is not completely clear. The potential of SS-SF composites in tissue engineering, elements which may contribute to their immunogenicity, and alternatives for their preparation and design, to modulate the immune response and take advantage of their useful properties, are discussed in this review. It is known that SS can enhance ß-sheet formation in SF, which may act as hydrophobic regions with a strong affinity for adsorption proteins inducing the chronic recruitment of inflammatory cells. Therefore, tailoring the exposure of hydrophobic regions at the scaffold surface should represent a viable strategy to modulate the immune response. This can be achieved by coating SS-SF composites with SS or other hydrophilic polymers, to take advantage of their antibiofouling properties. Research is still needed to realize the full potential of these composites for tissue engineering.


Assuntos
Fibroínas , Sericinas , Fibroínas/química , Fibroínas/farmacologia , Imunidade , Imunomodulação , Sericinas/química , Sericinas/farmacologia , Seda/química , Engenharia Tecidual , Alicerces Teciduais
6.
Life Sci ; 279: 119644, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34048813

RESUMO

Bacterial-derived extracellular vesicles could play a major role in attenuating and treating diseases. They play a major anti-infection role by modulating immune responses against pathogens and preventing infection by inhibiting pathogen localization and proliferation. In this study, outer membrane vesicles (ExHp-CD) released by Helicobacter pylori SS1 (H. pylori) and total antigens isolated from H. pylori SS1 (AgHp) were evaluated for their immunogenic potential and their effect on macrophage RAW 264.7 cells. Results demonstrated that both ExHp-CD and AgHp induced T helper 2 (Th2) immune response, which was reported to be important in immune protection against H. pylori infections. Both ExHp-CD and AgHp produced high levels of IL-10 and IL-4, while no significant levels of IL-12 p70 or IFN-γ were detected. However, ExHp-CD showed a better effect on macrophage RAW 264.7 cells compared to AgHp. Macrophage RAW 264.7 cells stimulated with 5, and 10 µg/mL of ExHp-CD showed an increased ratio of CD206 (M2 phenotype marker) and a decreased ratio of CD86 (M1 phenotype marker). Moreover, results suggested that the immunogenic effect that ExHp-CD possesses was attributed to their cargo of Epimerase_2 domain-containing protein (Epi_2D), Probable malate:quinone oxidoreductase (Pro_mqo), and Probable cytosol aminopeptidase (Pro_ca). Results demonstrated that ExHp-CD possesses an immunological activity to induce Th2 immune response against H. pylori infection with results comparable to AgHp. However, ExHp-CD showed higher efficacy regarding safety, biocompatibility, lack of toxicity, and hemocompatibility. Thus, it could serve as an immunogenic candidate with more desired characteristics.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Vesículas Extracelulares/imunologia , Infecções por Helicobacter/microbiologia , Helicobacter pylori/imunologia , Imunidade Celular/imunologia , Macrófagos/imunologia , Animais , Infecções por Helicobacter/imunologia , Interações Hospedeiro-Patógeno , Camundongos , Células RAW 264.7
7.
Life Sci ; 264: 118653, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33115606

RESUMO

The ongoing pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a substantial stressor that is greatly impacting environmental sustainability. Besides, the different pre-existing environmental stressors and coronavirus disease-2019 (COVID-19)-related stressors are further worsening the effects of the viral disease by inducing the generation of oxidative stress. The generated oxidative stress results in nucleic acid damage associated with viral mutations, that could potentially reduce the effectiveness of COVID-19 management, including the vaccine approach. The current review is aimed to overview the impact of the oxidative stress damage induced by various environmental stressors on COVID-19. The available data regarding the COVID-19-related stressors and the effects of oxidative stress damage induced by the chronic stress, exposure to free radicals, and malnutrition are also analyzed to showcase the promising options, which could be investigated further for sustainable control of the pandemic.


Assuntos
COVID-19/virologia , Dano ao DNA/genética , Estresse Oxidativo/genética , SARS-CoV-2/genética , Antioxidantes/uso terapêutico , Dieta Saudável , Gerenciamento Clínico , Estilo de Vida Saudável , Humanos , Mutação , Pandemias , Tratamento Farmacológico da COVID-19
8.
Biomed Pharmacother ; 133: 111008, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33227708

RESUMO

The ongoing pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has drawn the attention of researchers and clinicians from several disciplines and sectors who are trying to find durable solutions both at preventive and treatment levels. To date, there is no approved effective treatment or vaccine available to control the coronavirus disease-2019 (COVID-19). The preliminary in vitro studies on viral infection models showed potential antiviral activities of type I and III interferons (IFNs), chloroquine (CQ)/hydroxychloroquine (HCQ), and azithromycin (AZM); however, the clinical studies on COVID-19 patients treated with CQ/HCQ and AZM led to controversies in different regions due to their adverse side effects, as well as their combined treatment could prolong the QT interval. Interestingly, the treatment with type I IFNs showed encouraging results. Moreover, the different preliminary reports of COVID-19 candidate vaccines showcase promising results by inducing the production of a high level of neutralizing antibodies (NAbs) and specific T cell-mediated immune response in almost all participants. The present review aims to summarize and analyze the recent progress evidence concerning the use of IFNs, CQ/HCQ, and AZM for the treatment of COVID-19. The available data on immunization options to prevent the COVID-19 are also analyzed with the aim to present the promising options which could be investigated in future for sustainable control of the pandemic.


Assuntos
Antivirais/uso terapêutico , Azitromicina/uso terapêutico , Vacinas contra COVID-19/uso terapêutico , COVID-19/prevenção & controle , Cloroquina/uso terapêutico , Interferons/uso terapêutico , Humanos , Hidroxicloroquina/uso terapêutico , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA